This video shows how an ESC uses a PWM waveform to control motor speed. It simulates an AC sine wave using positive and negative DC pulses. Notice how it changes the DC pulse widths but keeps a constant peak voltage during the complete throttle range. The constant peak voltage remains at your battery pack voltage.
Why it is best to run at full throttle.
A speed controller controls power to the motor by turning full throttle current on and off really fast, 11 to 13 thousand times per second (Pulse Width Modulation or PWM). The percentage of each on/off pulse that is off compared to the part that is on determines how much power the motor sees. I.E. With a pulse that is 50% off and 50% on the motor will see 50% power*. Because each on pulse is 100% of full throttle current, a system set to pull 20 amps at full throttle through a Phoenix 10 will not last if you are throttled back to the point where you only see 10 amps on a wattmeter. The ESC in this case is still switching 20 amps, which it can’t do for long. Because an electric motor will always to try to pull as much power as is available to get to its rpm (volts times Kv), when you are running the motor below its Kv speed by switching power on an off, each on pulse will actually be way over the full throttle amp draw. That is why ESCs work harder at partial throttle than full throttle and why we underrate our ESCs. We underrate not so they can handle more current than their rating at full throttle, but so they can handle extended partial throttle operation with no problems. CC
I hope this helps to clarify what PWM means and why it is better to run it wide open, than half throttle. Less work, stress and heat on the FETS at WOT
Why it is best to run at full throttle.
A speed controller controls power to the motor by turning full throttle current on and off really fast, 11 to 13 thousand times per second (Pulse Width Modulation or PWM). The percentage of each on/off pulse that is off compared to the part that is on determines how much power the motor sees. I.E. With a pulse that is 50% off and 50% on the motor will see 50% power*. Because each on pulse is 100% of full throttle current, a system set to pull 20 amps at full throttle through a Phoenix 10 will not last if you are throttled back to the point where you only see 10 amps on a wattmeter. The ESC in this case is still switching 20 amps, which it can’t do for long. Because an electric motor will always to try to pull as much power as is available to get to its rpm (volts times Kv), when you are running the motor below its Kv speed by switching power on an off, each on pulse will actually be way over the full throttle amp draw. That is why ESCs work harder at partial throttle than full throttle and why we underrate our ESCs. We underrate not so they can handle more current than their rating at full throttle, but so they can handle extended partial throttle operation with no problems. CC
I hope this helps to clarify what PWM means and why it is better to run it wide open, than half throttle. Less work, stress and heat on the FETS at WOT
Comment